Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
نویسندگان
چکیده
of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
منابع مشابه
Stability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملA Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)
Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...
متن کاملDynamic and Stability Analysis of Flexible Cam-Follower Systems
In this paper, dynamic and stability analysis of a flexible cam-follower system is investigated. Equation of motion is derived considering flexibility of the follower and camshaft. Viscous and Coulomb frictions are considered in the rocker arm pivot. The normalized equation of motion of the system is a 2nd- order differential equation with periodic coefficients. Floquet theory is employed to s...
متن کاملA New Approach in Reduction of Multivariable Systems Using Stability Equation
The advantage of stability equation(SE) method, along with the succor of time moment matching, is explored for obtaining reduced order model of high degree linear dynamic multivariable systems. The new approach proposed, surpasses the deficiency of retaining the steady state value and stability of the original system. The reduction procedure introduced is simple and computer oriented. The same ...
متن کامل